[Back to Issue 5 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]

REVIEW: Lysine Methylation of Nonhistone Proteins Is a Way to Regulate Their Stability and Function

K. S. Egorova, O. M. Olenkina, and L. V. Olenina*

Institute of Molecular Genetics, Russian Academy of Sciences, pl. Kurchatova 2, 123182 Moscow, Russia; fax: (499) 196-0221; E-mail: olenina_ludmila@mail.ru

* To whom correspondence should be addressed.

Received July 15, 2009
This review is devoted to the dramatically expanding investigations of lysine methylation on nonhistone proteins and its functional importance. Posttranslational covalent modifications of proteins provide living organisms with ability to rapidly change protein activity and function in response to various stimuli. Enzymatic protein methylation at different lysine residues was evaluated in histones as a part of the “histone code”. Histone methyltransferases methylate not only histones, but also many nuclear and cytoplasmic proteins. Recent data show that the regulatory role of lysine methylation on proteins is not restricted to the “histone code”. This modification modulates activation, stabilization, and degradation of nonhistone proteins, thus influencing numerous cell processes. In this review we particularly focused on methylation of transcription factors and other nuclear nonhistone proteins. The methylated lysine residues serve as markers attracting nuclear “reader” proteins that possess different chromatin-modifying activities.
KEY WORDS: lysine, methylation of nonhistone proteins, p53, posttranslational modification, Stellate

DOI: 10.1134/S0006297910050019