[Back to Issue 7 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]

Involvement of Carbonic Anhydrase CAH3 in the Structural and Functional Stabilization of the Water-Oxidizing Complex of Photosystem II from Chlamydomonas reinhardtii

Anna K. Shukshina1 and Vasily V. Terentyev1,a*

1Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia

* To whom correspondence should be addressed.

Received February 26, 2021; Revised May 19, 2021; Accepted May 19, 2021
The involvement of carbonic anhydrases (CA) and CA activity in the functioning of photosystem II (PSII) has been studied for a long time and has been shown in many works. However, so far only for CAH3 from Chlamydomonas reinhardtii there is evidence for its association with the donor side of PSII, where the CA activity of CAH3 can influence the functioning of the water-oxidizing complex (WOC). Our results suggest that CAH3 is also involved in the organization of the native structure of WOC independently of its CA activity. It was shown that in PSII preparations from wild type (WT) the high O2-evolving activity of WOC was observed up to 100 mM NaCl in the medium and practically did not decrease with increasing incubation time with NaCl. At the same time, the WOC function in PSII preparations from CAH3-deficient mutant cia3 is significantly inhibited already at NaCl concentrations above 35 mM, reaching 50% at 100 mM NaCl and increased incubation time. It is suggested that the absence of CAH3 in PSII from cia3 causes disruption of the native structure of WOC, allowing more pronounced conformational changes of its proteins and, consequently, suppression of the WOC active center function, when the ionic strength of the medium is increased. The results of Western blot analysis indicate a more difficult removal of PsbP protein from PSII of cia3 at higher NaCl concentrations, apparently due to the changes in the intermolecular interactions between proteins of WOC in the absence of CAH3. At the same time, the values of the maximum quantum yield of PSII did not practically differ between preparations from WT and cia3, indicating no effect of CAH3 on the photoinduced electron transfer in the reaction center of PSII. The obtained results indicate the involvement of the CAH3 protein in the native organization of the WOC and, as a consequence, in the stabilization of its functional state in PSII from C. reinhardtii.
KEY WORDS: Chlamydomonas reinhardtii, carbonic anhydrase CAH3, photosystem II, water-oxidizing complex, O2 evolution activity, PsbP protein

DOI: 10.1134/S0006297921070075