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Abstract— Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool for studying the physiology of normal and 
pathologically altered tissues. This approach provides information about molecular features (gene expression, mutations, 
chromatin accessibility, etc.) of cells, opens up the possibility to analyze the trajectories/phylogeny of cell differentiation and 
cell–cell interactions, and helps in discovery of new cell types and previously unexplored processes. From a clinical point of 
view, scRNA-seq facilitates deeper and more detailed analysis of molecular mechanisms of diseases and serves as a basis for 
the development of new preventive, diagnostic, and therapeutic strategies. The review describes different approaches to the 
analysis of scRNA-seq data, discusses the advantages and disadvantages of bioinformatics tools, provides recommendations 
and examples of their successful use, and suggests potential directions for improvement. We also emphasize the need for 
creating new protocols, including multiomics ones, for the preparation of DNA/RNA libraries of single cells with the pur-
pose of more complete understanding of individual cells. 
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a truly 
revolutionary technique that has significantly expand-
ed our understanding of the heterogeneity and dynam-
ics of transcriptomes in the cells from various organ-
isms. This method was used for the first time in 2009 
to investigate mouse blastomeres at the second division 
stage  [1]. Although it was demonstrated that single-cell 
sequencing was superior to the microarray technology in 
the quantitative assessment of gene expression, the main 
limitation of scRNA-seq at that time was impossibility of 
multi plexing, as the libraries for individual cells had to be 
created manually in separate tubes. However, already in 
2011, the first protocol for the multiplex scRNA-seq was 
developed  [2], and in 2014, the first commercial plat-
form for automated preparation of single-cell libraries, 
Fluidigm C1, was introduced to the market [2]. At pres-
ent, there are several platforms available for scRNA-seq, 

including Fluidigm  C1/Smart-seq, BD  Rhapsody (BD 
Biosciences, USA), Chromium (10x Genomics, USA), 
etc., that provide the possibility of high-throughput 
analysis [3, 4].

The workf low for scRNA-seq is presented in Fig. 1. 
The cell suspension is prepared by sample homogeni-
zation, and the cells are separated either by physical 
methods, such as cell sorting or micromanipulation, or 
via barcoding using plates with oligonucleotides or mi-
crof luidics and combinatorics [5, 6]. Blood samples and 
cell cultures can be subjected to sorting or microma-
nipulation without preliminary suspension preparation. 
The obtained cells are used for the preparation of librar-
ies and following sequencing, and the data are processed 
using bioinformatics techniques.

Advances in scRNA-seq technologies have allowed 
to characterize main cellular and molecular mecha-
nisms involved in the development of cardiovascular [7], 
neurodegenerative  [8,  9], oncological  [10], and other 

Fig. 1. Typical workf low for scRNA-seq.
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Fig. 2. Approaches in bioinformatics analysis of scRNA-seq data.

diseases, to determine cellular taxonomy of widely used 
model organisms such as the thale cress (Arabidopsis 
thaliana)  [11], fruit f ly (Drosophila) [12], and zebrafish 
(Danio rerio) [13], and to decipher the heterogeneity of 
immune system cells in normal and pathological states, 
in particular, oncological diseases [14, 15].

The studies conducted at the beginning of the sin-
gle-cell sequencing development had been mainly focused 
on investigating the cell populations of tested samples, 

analysis of differential gene expression, cell cycle exam-
ination, and identification of cell types [1, 16]. However, 
it was obvious even at that time that the possibilities of 
scRNA-seq are much broader, and development of bio-
informatics approaches for integrating and transforming 
nucleotide reads into multimodal information describing 
different cell states was only a matter of time.

In this article, we reviewed the progress made in the 
scRNA-seq data processing and analysis used to obtain 
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information on the cell cycle, cell clusters and types, 
differentially expressed genes (DEGs), cell trajecto-
ry inference and RNA velocity, cell–cell interactions, 
gene variants, including copy number variations (CNVs) 
and single-nucleotide variants (SNVs), cell phyloge-
ny, chromatin accessibility, and spatial transcriptomics 
(Fig. 2). The advantages and disadvantages and possible 
approaches to overcome the limitations of each method, 
as well as the example of their successful use in the analy-
sis of biological systems are presented.

CELL CYCLE EVALUATION

Unlike bulk RNA sequencing (bulk RNA-seq), 
scRNA-seq provides information on the transcriptional 
profile of each individual cell in the examined sample. 
scRNA-seq has made it possible to investigate the cel-
lular diversity of tissues, to discover previously unknown 
cell populations, and to study biological processes at a 
single-cell level. However, the increase in the method 
resolution was accompanied by the increase in the tech-
nical and biological noise in the obtained data. The main 
source of biological noise in scRNA-seq data is cell cy-
cle [17]. Analysis of scRNA-seq data often considers the 
cell cycle phases as confounders, i.e., variables that can 
distort the investigated biological effect, for example, 
the differences between the cell types or changes in the 
transcriptional programs during disease or therapy. Cells 
in the investigated samples can be at different phases of 
cell cycle and, therefore, have different expression pro-
files even if they belong to the same cell type. A possi-
ble solution for this problem is removal of dispersed cell 
cycle-associated data during preparation of the gene ex-
pression template before the analysis. This procedure is 
especially advisable when no actively proliferating cells 
are expected in the analyzed samples, as in the studies of 
apoptosis. Exclusion of cell cycle genes or proliferating 
cells is also rational when the majority of the most vari-
able genes are represented by the cell cycle genes, which 
can interfere with the identification of differentially ex-
pressed genes. However, in some cases, e.g., upon com-
parison of subpopulations of dividing and non-dividing 
cells, the information on the cell cycle stage could be im-
portant, and this confounder should not be eliminated.

Popular packages for the analysis of scRNA-seq 
data, such as Seurat [18] and Scanpy [19], take into con-
sideration two parameters [20] that are based on the av-
eraged expression of the known marker genes of the cell 
cycle phases  S and G2/M  [21]. Depending on the cal-
culated parameter value, the cells could be annotated as 
being in the phase G2/M, G1, or S. The effects associat-
ed with cell cycle can be excluded using linear regression 
with consideration of the calculated parameters. If the 
following analysis requires to preserve the distinction be-
tween the populations of dividing and resting cells and, 

at the same time, to eliminate the differences associated 
with the cell cycle phases, it is recommended to use the 
difference between the G2/M and S parameters instead 
of the parameters themselves in the linear regression.

The Cyclone method [20] also uses known cell cy-
cle marker genes for evaluation and removal of effects 
associated with cell division. This algorithm is based on 
the comparison of expression of pairs of marker genes, 
because the ratio between their expression can be used 
for determining the cell cycle phase.

Other methods allow more detailed analysis of cell 
cycle and reconstruction of the progression of an indi-
vidual cell through the cell cycle based on scRNA-seq 
data. Similar to the above-mentioned techniques, some 
of these methods, such as peco [22] and reCAT [23], use 
the sets of known genes associated with the cell cycle. 
Other algorithms (Cyclum  [24], CYCLOPS  [25], and 
CCPE [26]) are based on unsupervised learning and use 
the cyclicity of gene expression for estimating the cell 
cycle pseudotime. These algorithms can be applied to ex-
tract the information on the genes associated with each 
phase of the cell cycle.

CELL CLUSTERING

Typical analysis of scRNA-seq data starts with deter-
mining the cell composition of the tested sample. At this 
stage, individual cells are combined into transcriptional 
clusters based on the similarities of their expression pro-
files, followed by identification of the cell type of each 
cluster based on the expression levels of specific and dif-
ferentially expressed marker genes. This task requires the 
use of data clustering algorithms, as well as the methods 
of analysis of DEGs. These algorithms and methods are 
not only applicable for the initial analysis of scRNA-seq 
data; they can be used as individual tools for solving par-
ticular biological problems.

Analysis of DEGs is used for investigating the ef-
fects of various pathological or experimental conditions 
on the transcriptional profiles of studied cell popula-
tions. This method can be applied to identify the genes 
and associated cellular processes that are activated or 
suppressed in different cell types during development 
of COVID-19 [27,  28], Alzheimer’s disease [29], au-
tism [30], and many other diseases. Moreover, differen-
tial expression analysis is used for identification of genes, 
whose expression changes during cell differentiation or 
in other dynamic processes affecting the phenotype of 
cell populations. This approach can also be also used 
for selecting the genes, whose expression profiles are re-
quired for constructing the cell trajectories.

Application of clustering algorithms is not limited to 
the initial stages of scRNA-seq data analysis. Clustering 
of cells as elements of a dataset could be performed sever-
al times in bioinformatics analysis, e.g., with the purpose 
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of discovery of rare cell populations [31]. Instead of using 
an entire initial set of expression profiles, repeated cell 
clustering in this case could be conducted based on, for 
example, gene signature  (a group of genes with unique 
expression pattern that can be used for the identification 
of cells of interest) or any other set of features associated 
with a particular cell type.

Cell annotation can be carried not only to determine 
the cell type, but for other purposes as well. For example, 
cell clusters could be annotated based on the viral load or 
their features [32].

In this and the two next sections of the review, we 
discussed various tasks of the bioinformatics analysis, 
namely, cell clustering, search for DEGs, and identifica-
tion of cell types.

Identification of cellular or transcriptional clusters 
in scRNA-seq data using clustering algorithms is one of 
the popular unsupervised learning tasks. The aim of clus-
tering is to combine cells into groups based on the sim-
ilarity of their transcriptional profiles. The groups could 
be characterized further as cluster of cells of the same 
type, at the same stage of differentiation, or at the same 
cell cycle phase. It should be mentioned that clusters are 
mathematically defined groups of cells that indeed could 
contain cells of same type. However, in actual practice, 
biology has very little to do with clustering algorithms.

At present, there are numerous methods available 
for scRNA-seq data clustering, each of them with its 
own advantages and drawbacks. So far, there is no con-
sensus on which of the methods is most efficient [33]. 
The methods for scRNA-seq data clustering are based on 
the commonly used algorithms, such as hierarchical clus-
tering, k-means clustering (SC3), and graph clustering. 
Cell clustering can be affected not only by the used clus-
tering method and its parameters, but also by the volume 
of data. An exponential increase in the amount of data 
leads to the increase in the data dimensionality, caus-
ing the so-called ‘curse of dimensionality’. The  multi-
dimensional character of data leads to the convergence 
of individual cells, which creates problems in determin-
ing the distance between them. In the multidimensional 
data, the most distant cells (differing in the expression 
of multiple genes) are at the same distance as the closest 
ones (with similar RNA profiles). Due to this problem, 
standard clustering techniques cannot provide separa-
tion of cells differing in the RNA profiles. In order to 
decrease the dimensionality and accelerate computing, 
the most significant genes (traits) are selected from the 
multidimensional scRNA-seq data and used in principal 
component analysis (PCA). These significant genes are 
usually highly variable genes (HVGs), the changes in ex-
pression of which are associated predominantly with the 
biological differences in the analyzed cells rather than 
with the technical noise [34]. There are also other meth-
ods for modeling the technical noise and selection of 
significant genes based, for example, on the constructed 

M3Drop model [35]. In this case, clustering uses the dis-
tance between the cells in the space with a reduced di-
mensionality.

The hierarchical clustering algorithm combines the 
cells into growing clusters (bottom-up, or agglomerative 
approach) or divides clusters into subgroups (top-down, 
or divisive approach) based on the array of distances 
between the cells. The programs using this algorithm 
for the identification of cell subpopulations, such as 
pcaReduce  [36] or CIDR  [37], determine the relation-
ships between the clusters using a dendrogram. However, 
in comparison with other clustering methods, these ap-
proaches are slower, which could be critical for process-
ing of high-volume scRNA-seq data.

The SC3 method for the clustering of scRNA-seq 
data  [38] is based on the k-means clustering algorithm, 
which involves iterative determination of the mass cen-
ters (centroids) of a specified number of clusters and 
clarification of cluster boundaries. A distinctive feature 
of the methods based on the k-means clustering algo-
rithm is that the obtained clusters are approximately the 
same size. In this case, large subpopulations of cells are 
divided into several clusters, while rare cells are com-
bined with other clusters. Moreover, the result of clus-
tering with the k-means clustering algorithm to a large 
extent depends on the random initiation of centroids and 
does not necessary represent the global minimum.

In the case of big scRNA-seq data, the more suit-
able methods for cell clustering are graph-based ap-
proaches, such as Louvain and Leiden methods. In these 
methods, a k  nearest neighbor graph (kNN graph) is 
first constructed by projecting the data to the reduced 
dimensionality space, followed by the definition of cell 
clusters as groups of most connected with each other 
vertices of the graph. The number of identified clusters 
is not specified directly, but is affected by the resolution 
and by the specified number of k nearest neighbors used 
for the graph construction. The graph-based identifi-
cation of cell subpopulations is realized in the Pheno-
Graph program [39] and Seurat  [18] and Scanpy  [19] 
packages. The advantages and drawbacks of each group 
of methods have been described in detail in the review by 
Kiselev et al. [33].

scRNA-seq data clustering allows detection of al-
ready known types or states of cells with characteristic 
high expression of marker genes or identification of pre-
viously undescribed cell populations, whose existence 
can be later validated experimentally, e.g., by immunos-
taining  [40,  41]. Rare or small cell subpopulations can 
be searched for using more complex approaches for data 
normalization [41] and reclustering of selected individ-
ual or several most interesting clusters [31]. The biolog-
ical noise in scRNA-seq data caused by contamination 
of the investigated tissues can be eliminated by remov-
ing the cluster of non-target cells followed by data re-
clustering [40].
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ANALYSIS OF DIFFERENTIAL 
GENE EXPRESSION

Analysis of differential gene expression allows to es-
tablish the differences between the clusters, to identify 
cell types and their markers, and to investigate transcrip-
tional dynamics in the processes of cell differentiation, 
disease development, or upon exposure to exogenous 
and/or endogenous factors.

Although the tasks for DEG identification based on 
the data of bulk RNA-seq and scRNA-seq are formulat-
ed in a similar way, the approaches used for solving this 
problem are very different. The methods of bulk RNA-seq 
data analysis for differential gene expression, such as 
DESeq2 [42] and edgeR [43], address the difficulties in 
the evaluation of the gene expression dispersion based on 
a small number of replicates (biologically different sam-
ples from the same experimental group). This problem is 
absent in the analysis of scRNA-seq data, because each 
cell can be considered as a replicate. However, an in-
crease in the number of measurements (cells) could pro-
duce false-positive results. For example, if upregulation 
of a gene in one of the clusters is statistically significant, 
but is only 1.1-fold, the statistical significance could be 
fully lost if the number of measurements is low. In this 
connection, for a gene to be identified as DEGs, its ex-
pression should change to a certain level, and the value of 
this threshold should be different for each particular data 
set. Nevertheless, the above-mentioned methods are ap-
plicable for the analysis of scRNA-seq data. In particu-
lar, analysis of scRNA-seq data for DEGs with DESeq2 
and edgeR involves weighing of expression values for 
each cell and each gene, which allows to overcome the 
problem of sparsity of scRNA-seq data caused by an ex-
tremely high fraction of unexpressed genes in each cell. 
Previously, this problem has been solved by applying 
the methods specifically developed for the analysis of 
scRNA-seq data using zero-inf lated negative binomial 
(ZINB) [44]. At present, the model of negative binomi-
al, NB, without zero inf lation is recommended for the 
use with scRNA-seq data [45]. Moreover, comparison of 
the methods for the DEG analysis revealed that in the 
case of simple experimental design (comparison of ‘con-
trol’ and ‘experimental’ data in the absence of other vari-
ables), the non-parametric Mann–Whitney test provides 
the best results [46].

However, the above-mentioned methods do not 
take into account some features of scRNA-seq data. 
In particular, the distribution of gene expression in sin-
gle cells is characterized by bimodality. The expression 
values are either positive for the cells where the respec-
tive transcript has been detected, or equal to zero for the 
cells where no transcript expression has been found due 
to some biological or technical reasons. The absence of 
expression can be explained by its stochastic nature (bio-
logical reason) or loss of transcript at the stage of cDNA 

library preparation (technical reason). This feature of the 
single-cell transcriptomics was taken into account in the 
SCDE [47] and MAST [48] methods. The SCDE meth-
od uses a combination of the negative binominal dis-
tribution for the positive expression values and Poisson 
distribution for unexpressed genes, in which case the 
background signal can be present. The SCDE method 
can be used only for the identification of DEGs in two 
groups of cells (control and experiment). Other vari-
ables, such as the sample batch or time point, cannot be 
used in the SCDE method, which limits its application 
only to the experiments with a simple design. The MAST 
method uses the hurdle model for the description of gene 
expression in single cells and can be employed in more 
complex experimental designs, for example, those with 
several types of exposure.

The search for DEGs in cell subpopulations de-
pends on the stage of clustering, which uses the same 
information on gene expression in individual cells. This 
is why analysis of differential expression after cell clus-
tering reduces the statistical significance of differences 
(p-value). This problem could be resolved by using the 
TN (truncated normal) test, which takes into account 
the levels of gene expression that define the boundaries 
between the cell clusters [49].

The idea that each individual cell represents an in-
dependent sample is a big assumption, because all cells 
in a sample usually originate from the same predeces-
sor cell or a small number of cells. Hence, comparison 
of cells subpopulations derived from the same organism 
estimates the variability of transcriptional profiles at the 
level of an individual organism but not at the population 
level. If the dataset represents a sample of cells from sev-
eral donors, differential expression can be analyzed by 
calculating the aggregated (pseudo-bulk) expression or 
using generalized linear mixed model in which the do-
nor is considered as a random factor [50]. The aggregat-
ed expression is calculated by summing or averaging gene 
expression in the cells from each donor, resulting in sev-
eral pseudo-repeats corresponding to the independent 
donors. In this way, DEG analysis based on scRNA-seq 
data is brought down to the task that had been already 
successfully solved for the bulk RNA-seq data.

However, the results of DEG analysis obtained by 
bulk RNA-seq and scRNA-seq could differ significantly. 
In the case of scRNA-seq, differential gene expression 
is detected predominantly among the highly expressed 
genes with moderate differences in the expression levels 
(fold change) [51]. That is why identification of genes 
whose expression alters significantly in response to var-
ious factors is more difficult using the scRNA-seq-based 
approaches.

Due to properties of the scRNA-seq library prepara-
tion, which involves the use of oligo(dT) primers in the 
vast majority of methods, the transcripts identified in 
single cells are mostly polyadenylated RNAs, e.g., mRNAs 
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and some long non-coding RNAs (lncRNA). Analysis of 
expression of other RNA types, in particular, microRNAs 
(miRNAs), at a single-cell level requires special tech-
niques of sample pretreatment [52]. Nevertheless, the 
activity of microRNAs in individual cells can be estimat-
ed based on the expression levels of miRNA precursors, 
which could be polyadenylated and capped, and, as a 
result, included in the sequenced transcriptome.

Analysis of differential expression at the cell level 
using scRNA-seq allowed to reveal the causes of disrup-
tions of epithelial regeneration in the lung alveoli during 
COVID-19 [27, 53] and to characterize the properties of 
cytokine storm and immune response to viral infection 
mediated by different types of immune cells [54]. This 
method facilitated identification of markers involved in 
the drug resistance of Ewing’s sarcoma [55] and helped 
to estimate the functional heterogeneity of multipotent 
human and mouse stromal cell based on the profiles of 
adenylate cyclase expression  [56]. Changes in the gene 
expression in the process of clonal expansion and pos-
sible accompanying exhaustion of T cells during antitu-
mor immunotherapy were also investigated at the level of 
single cells with the help of differential expression anal-
ysis  [57]. The same methods have been used for iden-
tification of gene signatures, i.e., sets of markers that 
predict the cell response to immunotherapy by immune 
checkpoint blockade [58].

IDENTIFICATION OF CELL TYPES

Identification of cell types typically involves the use 
of standard histological methods, most commonly im-
munostaining, i.e., the binding of antibodies to specific 
cell markers and their subsequent visualization. An alter-
native approach is RNA-seq, which detects cell markers 
at the level of transcripts, followed by cell typing based 
on the bioinformatics data. However, it is well known 
that the presence of mRNA in the cell does not always 
correlate with the biosynthesis of the encoded protein 
due to multiple posttranscriptional and posttranslational 
regulatory mechanisms [59,  60]. scRNA-seq-based cell 
typing could be automated or manual.

Automated cell typing is performed by comparing 
expression profiles of the investigated cells with the ex-
pression of known genetic markers described in numer-
ous databases containing the microarray, bulk RNA-seq, 
and scRNA-seq data for certain cells types. If the pro-
files coincide, the program automatically identifies the 
cell type. This principle is realized in the Single  R tool 
[61], which includes the celldex package providing ac-
cess to seven cell databases. ScType [62], scCATCH [63], 
scSorter  [64], and SCINA  [65] can also been used for 
automated cell typing. Automated annotators could use 
the results of clustering conducted prior to the analysis or 
recalculate the clustering results in accordance with the 

cell types found in the sample. It must be noted that the 
automated annotators recognize only a limited number 
of cell types due to the lack of information on the expres-
sion profiles of other numerous cell types.

Another strategy for the automated cell typing is the 
use of annotated samples from other research groups, 
a bioinformatics approach called transferring labels 
[66]. This procedure starts with the identification of 
cells, whose expression profiles coincide with the refer-
ence one. After the anchor cells (same cells in different 
samples) are found, the information for the reference 
cell type is applied to the tested sample. The Azimuth 
web-service operates on this principle  [67]. At present, 
11 reference datasets are available.

There is also an intermediate variant of automated 
cell typing involving the construction of a library of an-
notated samples for the studied cells. This approach al-
lows to select the best open datasets and provides a clear 
understanding of the design of the experiment in which 
these samples were obtained.

Manual cell typing. The necessity for manual cell 
typing is due to the fact that the majority of cells in the 
sample are in the transient, non-differentiated form. 
These cells typically lack specific markers and cannot 
be annotated by automated typing. Moreover, the clas-
sical gene marker could be insufficient for identification 
of differentiated cells. In this case, the cell type could be 
determined manually based on either less-known genet-
ic markers or genetic markers specified by the research-
er [68]. It is our opinion that the cells can also be typed 
based on the involvement in different biological process-
es, transitional genes, or cell position with regard to the 
developmental trajectory.

Cell typing based on less-known markers or markers 
specified by a researcher is more suitable for determining 
the type of differentiated cells and is performed by inves-
tigating the genes in each cluster obtained by clustering. 
The researcher assesses the list of highly expressed genes 
for certain markers and if these markers are present, as-
sign the cell to a known cell type. Another approach is 
assignment of identified clusters to particular cell types 
based on the markers specified in Seurat and Scanpy. 
Genetic markers could be selected based on the pub-
lished data. For example, the use of the gene panel pre-
determined in advance allowed to identify cell types by 
comparative analysis of the same brain regions in higher 
primates [69]. This typing method was also used for iden-
tification of cell subpopulations in the follicular lympho-
ma during disease recurrence and progression [70].

Cell typing according to the biological processes is 
based on the identification of groups of genes partici-
pating in biochemical processes specific for the cells ex-
posed to certain factors. Biological processes occurring 
in a given cell cluster can be recognized from DEGs. 
For this purpose, we recommend the user-friendly web 
service g:Profiler, which combines the information on 
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DEGs in a cluster and describes all biological processes, 
signaling pathways, and cellular components associated 
with the protein products of these genes. This approach 
allows to determine the type of cells undergoing differen-
tiation based on the markers associated with the changes 
in the cell phenotype.

Unlike the two above methods of manual cell typ-
ing, typing based on the transitional genes uses non-
spliced pre-mRNAs in addition to the protein-coding 
transcripts. The ratio between the spliced and nonspliced 
forms of mRNA allows to evaluate the state of protein ex-
pression (activation or repression) at the moment of ex-
amination and to identify the genes essential for the cell 
development at that particular moment using the corre-
sponding tool, e.g., scVelo  [71]. The list of these genes 
can be manually searched for the those responsible for 
cell transition to its differentiated form, which gives the 
opportunity to predict the type of cells that will descend 
from the investigated group of cells.

Manual cell typing can also be performed based on 
the cell development trajectory. In the majority of cas-
es, cell clusters lacking specific markers are between the 
clusters with clearly pronounced markers and, hence, 
might represent intermediate clusters containing cells in 
the transitional phase between the initial and final forms.

DEVELOPMENTAL TRAJECTORIES 
AND RNA VELOCITY

Any type of sequencing provides a snapshot of cell 
life and information on the modality of interest at the 
moment of examination. scRNA-seq libraries contain in-
formation on the transcriptional profiles of several hun-
dreds and thousands of cells, whose heterogeneity is 
determined mostly by the dynamic nature of cell devel-
opment. The methods for the reconstruction of cell de-
velopmental trajectory, also called pseudotime analysis, 
allow to arrange the cells in the investigated sample along 
the modeled temporal trajectory based on the similarities 
of their expression profiles. The result of construction of 
the developmental trajectory in pseudotime is a graphi-
cal representation of all cells in the sample arranged in a 
line, starting with the root (initial) cell and ending with 
the end (differentiated) cell. Elucidation of the develop-
mental trajectory makes it possible to investigate various 
biological phenomena, such as differentiation, cell cycle, 
and immune response in a dynamic context.

The first tool developed for the construction of de-
velopmental trajectories was the Monocle R-package. 
Monocle first identifies DEGs to reduce the number of 
analyzed genes and then uses the independent compo-
nent analysis to further reduce the space dimensionali-
ty. To construct the developmental trajectory, Monocle 
builds the minimum spanning tree followed by the 
search for the longest path through this tree  [72]. After 

Monocle, more than 50 methods have been suggested, 
TSCAN [73] and Slingshot [74] being the most popular 
among them. The methods differ in multiple parameters, 
such as identification of root and end cells, type of graphs 
(direct, linear pseudotime, cyclic pseudotime, probabili-
ty of end state, cluster evaluation, orthogonal projection, 
and cell graph), and type of trajectory (unbound and 
bound graphs, cyclic and acyclic graphs, and tree-like 
graph) [75]. So many methods have been developed, so it 
became necessary to create a unified platform, where the 
data could be analyzed with serval methods at the same 
time. One of such platforms is dynverse, which combines 
45 methods for the developmental trajectory construction.

In order to improve the quality of constructed tra-
jectories, some methods use supplementary informa-
tion in addition or instead of the gene expression data. 
The most popular type of such information is RNA ve-
locity [71]. The concept of RNA velocity was suggested 
when studying scRNA-seq data obtained using different 
platforms (Smart-seq2, STRT/C1, inDrop, and 10x Ge-
nomics Chromium). It was found that 15 to 25% reads 
contained nonspliced intron sequences, which could be 
explained by the presence of poly(A) sequences not only 
in the poly(A) tails, but also in internal poly(A) sequenc-
es [76]. It was suggested that both spliced and nonspliced 
mRNAs should be used in analysis. In this case, RNA 
velocity is defined as the time derivative of the gene ex-
pression stage. All processing was divided into three 
stages: transcription, splicing, and degradation. Gene 
expression is detected when transcription and splic-
ing dominate over degradation and is suppressed, when 
degradation dominates over transcription and splicing. 
The  value of RNA velocity determines the direction of 
the vector of each cell in the reduced-dimensionality 
space. This forms the vector field that indicates the di-
rection of cell development in the sample. Since the vec-
tor field is overlaid onto previously obtained cell clusters, 
the direction of cell differentiation or response to the ex-
posure to the investigated factor can be suggested.

CELL–CELL COMMUNICATIONS

Development, functioning, regeneration, and home-
ostasis of tissues and organs are mediated by cell–cell 
communication, or cell–cell signaling, a process oc-
curring through the interaction of ligands (cytokines, 
chemokines, hormones, growth factors, and neurotrans-
mitters) with cell receptors.

Cell–cell signaling is subdivided into autocrine 
(ligand secreted by the cell interacts with its receptors on 
the same cell), paracrine (ligand secreted by the cells in-
teracts with the receptors on cells from the same tissue), 
and endocrine (ligand secreted by the cells interacts with 
the receptors in other tissues or organs). Another type 
is direct cell–cell interactions, i.e., physical contacts 
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between the two cells that participate in the cell–cell 
communication (in the process of cell recognition) or 
perform the structural functions.

Studying cell-cell communications helps to eluci-
date the mechanisms of cell differentiation and mor-
phogenesis, etiology of diseases [77], and properties of 
the immune response formation [78]. Understanding 
cell–cell signaling facilitates the development of novel 
therapeutic strategies [79] and can help in predicting the 
severity of various diseases [80, 81].

Investigation of cell–cell signaling starts with iden-
tification of protein–protein interactions with a help of 
two-hybrid systems, co-immunoprecipitation, and oth-
er techniques [82]. A large number of ligand–receptor 
interactions have been characterized, although only for 
a limited number of cell types and tissues. scRNA-seq 
allows to assess the expression levels of ligand-encod-
ing genes in thousands of cells in one experiment and to 
investigate the cell composition of tissues, as well as to 
elucidate the mechanisms of endocrine and paracrine 
regulation at the systemic level.

The goal of the cell–cell signaling analysis based on 
scRNA-seq data is to understand whether a pair of cells 
(A and B) communicates with each other through a spe-
cific ligand–receptor (l–r) interaction. Simple methods, 
such as iTalk [83] and CellTalker, solve this problem us-
ing the following strategy: if a gene of the ligand l is dif-
ferentially activated in type A cells, and the gene of the 
receptor r is differentially activated in type B cells, these 
cells are considered interacting. Although these methods 
are intuitively straightforward and their results are easy to 
interpret, they fail to detect communications typical for a 
large number of cell types in tissues.

More sophisticated techniques introduce a notion 
of interaction score S, which is defined as a function of 
the average expression of  l in A  (lA) and  r in B  (rB) of 
either their sum (CellPhoneDB method [84]) or their 
product (SingleCellSignalR  [85]). To estimate the in-
teraction score between the cells A and B, the CellCall 
algorithm [86] uses information on the expression of the 
RegB regulon (a set of target genes activated by a certain 
transcription factor co-expressed with this transcription 
factor), which is regulated by the transcription factor ac-
tivated upon the r receptor interaction with the ligand. 
If  the receptor consists of several subunits encoded by 
different genes, r  represents either the minimal expres-
sion value for all receptor subunits (CellPhoneDB) or 
the geometric mean of the expression value of all sub-
units (CellCall).

However, not all cells expressing the ligand–recep-
tor pairs communicate. The emergence of false-positive 
results can be avoided by using the permutation test (re-
alized in CellPhoneDB). In this test, cell markers are 
randomly mixed multiple times, and the interaction score 
S is calculated each time, yielding the null distribution 
used for the calculation of the p-value for the initial  S. 

The disadvantages of this approach are similar to the 
disadvantages of methods based on differential gene ex-
pression: communications highly represented in a dataset 
can be statistically insignificant. An alternative solution 
to this problem is realized in SingleCellSignalR. The au-
thors of this algorithm considered all communications 
with the strength above a certain pre-set threshold as 
significant. The CellCall algorithm assumes that a com-
munication is significant if the expected false discovery 
rate in the gene set enrichment analysis (FDR GSEA) of 
RegB is below 0.05.

We should also mention the scTensor algorithm [87]. 
In this algorithm, a third-order tensor is formed with the 
dimensions A × A × L, where A  is the number of cell 
types, L  is the number of investigated ligand–receptor 
pairs, and the (a, b, l) element is the strength of commu-
nication via the ligand–receptor pair (l–r) in the A and B 
pair of cells. Hence, the tensor consists of all commina-
tion strength values for all communications between all 
ligand–receptor pairs. The strength of communication 
in this method is calculated by a simple multiplication 
of lA and rB. The constructed tensor is transformed into 
the product of two arrays and a novel tensor via nonneg-
ative Tucker decomposition. As a result, the information 
on the cell–cell signaling is described simultaneously for 
the entire data set, which allows to reveal more complex 
processes, e.g., entire communication networks. Despite 
its advantages, this method is not very popular mainly 
due to the complexity of result interpretation.

The above-described approaches to the evalua-
tion of cell–cell signaling are fundamentally different, 
primarily in the hypothesis they are testing. CellTalker, 
iTalk, and CellPhoneDB allow to identify signalling 
pathways that are unique for particular cell types in the 
investigated dataset. SingleCellSignalR, CellCall, and 
scTensor allow to detect a large number of communi-
cations, including non-specific ones, but they might 
miss low-strength communications [88]. Moreover, all 
the described methods provide information on putative 
signaling pathways, which should be then validated ex-
perimentally. The results obtained with these tools sig-
nificantly depend on the databases of ligand–receptor 
interactions used. The  existence of communications 
between the cells can be confirmed more reliably with 
the help of the actively developing methods of spatial 
transcriptomics [89]. These new methods will be able to 
provide answers to the questions on how architecture of 
various tissues is formed and maintained.

GENE REGULATORY NETWORKS

Gene expression is regulated through the coupling 
and interaction of processes of RNA synthesis and splic-
ing, as well as mature mRNA degradation. In general, the 
level of gene expression is strongly associated with the 
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activity of mRNA transcription. In its turn, transcription 
is regulated by multiple signals. For example, hormones 
bind to their cognitive receptors and trigger signaling 
cascades located mainly in the cell cytoplasm. Signalling 
cascades activate transcriptional factors, which interact 
with their binding sites in the target genes. These interac-
tions take place in the cell nucleus and have been named 
gene regulatory networks. Gene regulatory networks par-
ticipate in the maintenance of cellular homeostasis and 
formation of cell heterogeneity; their disruption can re-
sult in the development of various pathological states 
and aggravate the course of diseases [90, 91]. Investigat-
ing gene regulatory networks might improve our under-
standing of various biological processes in live organisms 
and facilitate the development of novel therapeutic strat-
egies for disease treatment.

Gene regulatory networks can be constructed based 
on scRNA-seq data using regression models, co-regula-
tory interactions, and reconstruction of developmental 
trajectory.

The regression-based approaches use gene lists to 
evaluate connections between the target genes and their 
regulators, as well as to estimate the strength of these in-
teractions. GENIE3 was the original method developed 
for the regression-based construction of gene regulatory 
networks [92] and is still widely used for the construction 
of gene regulatory networks from the bulk RNA-seq and 
scRNA-seq data. However, in the case of scRNA-seq 
data, GENIE3 cannot be used if the number of inves-
tigated cells is within several thousands. This issue was 
successfully resolved using gradient boosting in the 
GRNBoost2 [93], although this method has a serious 
drawback, namely, a large number of false-positive con-
nections identified by regression analysis of single cells 
in comparison with the analysis of bulk RNA-seq data. 
The use of SCENIC tool [94] helped to overcome this 
disadvantage by selecting connections between the reg-
ulators and target genes containing putative binding sites 
for the respective transcription factors. A combination 
of transcription factor with the activated target genes is 
called a regulon.

Construction of gene networks based on co-regula-
tory interactions involves calculation of correlation be-
tween the expression of individual genes in single cells 
using the weighted gene co-expression network analysis 
(WGCNA) method that employs the Pearson coeffi-
cient and Spearman’s rank correlation coefficient [95]. 
Co-expression modules are correlated with the gene 
functions using the GSEA method [96] and databases 
(e.g., STRING  [97] and HumanNet  [98]). The use of 
WGCNA with scRNA-seq data allows to identify func-
tional modules and their key genes for each cell type, 
which could be associated with particular physiolog-
ical or pathological states  [99]. The key genes have the 
highest number of correlations in terms of co-expression 
and define to a great degree the functions of the modules. 

Identification of these genes helps to reveal, for exam-
ple, the factors associated with chemotherapy resis-
tance [100] or prognostic markers [101].

Analysis of developmental trajectories considers 
single-cell sequencing data as a dynamic system that pro-
vides an opportunity to go beyond the statistical nature 
of transcriptome and to obtain the pseudotime for sub-
sequent construction of gene networks using common 
differential equations. Such networks ref lect the dynam-
ics of gene interactions, i.e., changes in the gene expres-
sion over continuous pseudotime are characterized by 
the functions that include the activating and suppressing 
effects of other genes as variables [102]. This approach 
most accurately describes gene interactions in continu-
ous processes, e.g., differentiation, and is realized in the 
SCODE tool [103].

ANALYSIS OF CNVs

CNVs provide an important contribution to the 
genetic variability of live organisms and define predis-
position to various diseases. The main criteria for the 
assignment of a structural variant to the copy number 
variants are repeatability, numerical variability, and ‘sig-
nificant’ length. Despite the predetermined criteria, the 
boundaries between the types of structural variants are 
defined differently in different studies, and that is why 
some CNVs have been simultaneously assigned to several 
different categories  [104]. At present, many researchers 
define CNVs as unbalanced chromosome rearrange-
ments  –  deletions and insertions of DNA sequences, 
whose sizes varies from several kilobases (focal) to entire 
chromosomes (chromosomal). CNVs can contain mo-
bile genetic elements and non-coding sequences [105]. 
Chromosomal CNVs are generated by aneuploid cells 
with an abnormal number of chromosomes and alter the 
transcription levels of a large number of genes. CNVs 
could be neutral or pathogenic; the pathogenicity of 
CNV is determined by its direct effect on the gene ex-
pression and/or formation of new protein products [106].

The classic methods used for CNV identification are 
array-based comparative genomic hybridization (aCGH), 
multiplex ligation-dependent probe amplification (MLPA), 
and new-generation sequencing (NGS), mainly whole- 
genome sequencing (WGS). However, aCGH and MLPA 
are limited by the microarray resolution determined 
by the coverage and density of f luorescent probes and 
unable to detect the copy-neutral loss of heterozygos-
ity. CNV analysis in WGS is complicated by the costs, 
duration of data processing, and high computation re-
quirements [107].

There are only few methods for the CNV identifica-
tion from scRNA-seq data. All of them are based on the 
assumption that differential gene expression correlates 
with the CNVs  [108]. The inferCNV method uses the 
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averaging of gene expression levels and compares the 
CNV profile of investigated sample with the reference. 
Despite the fact that this method reveals with a high 
accuracy the clonal changes at the level of chromo-
some arms, identification of subclonal differences us-
ing inferCNV is problematic. The results obtained with 
inferCNV are also very sensitive to the selection of ref-
erence cells. Therefore, independent normalization of 
different cell types using respective reference cells is re-
quired [109]. The results are also affected by the absence 
of data on the B-allele frequency (BAF), a normal-
ized measure of the allelic intensity ratio of two alleles 
(A and B), leading to a high false-positive rate.

Other tools developed for the CNV analysis com-
bine genetic and transcriptional information. In partic-
ular, HoneyBADGER (hidden Markov model integrated 
Bayesian approach) [109] calculates the deviation of the 
fraction of alleles of heterozygous variants from the ex-
pected value and identifies the CNV regions. To prevent 
the emergence of false positives, the posterior probability 
of belonging of predicted CNV regions to the specified 
states is estimated. In HoneyBADGER, it is necessary 
to first identify the SNVs, because this tool confirms 
the presence of CNVs in the candidate regions based on 
the monoallelic expression of SNVs in them. Another 
method, Casper  [110], uses multiscale decomposition 
for smoothing the signals of expression and allelic shift 
to removes most of the noise. Because this tool gener-
ates the profile of allelic shift from the aligned reads, no 
SNV identification is required. However, because the 
signal of the alternative allele frequency shift is calculat-
ed by combining all reads, the cells with a larger number 
of reads could dominate in the shift signal, which could 
lead to the distortion of results. Although the described 
methods were developed for the analysis of full-length 
transcripts, they have been also validated for the tran-
script end sequencing [109,  110]. The CopyKAT tool 
with the integrative Bayesian approach and hierarchic 
clustering was developed specifically for working with 
the transcript end scRNA-seq data [111]. This method is 
more suitable for the analysis of tumor cells, which are 
often aneuploid. Thus, it was shown to be effective for 
the identification of tumor and hybrids cells among the 
circulating epithelial cell in breast cancer patients [112].

While the tools for CNV identification used in WGS 
are based on the uniform genome coverage, in the case 
of scRNA-seq, the signal is concentrated only in exons. 
In this regard, it is recommended to conduct analysis of 
the allelic imbalance in order to understand the correla-
tion between the genome and transcriptome. However, 
distinguishing between the true gene variants and tech-
nical artefacts can be difficult due to the allelic dropout, 
heterogeneity, and low sequencing depth [113]. Hence, 
at present, analysis of DNA ploidy and identification of 
aneuploidy using scRNA-seq data provides more accu-
rate results than identification of focal CNVs.

IDENTIFICATION 
OF SINGLE-NUCLEOTIDE VARIANTS

Similar to CNVs, SNVs contribute to the genetic 
variability of living organisms, affect the course of bio-
logical processes, and could play a role of genetic factors 
determining predisposition to diseases. Identification of 
SNVs is possible with various molecular-genetic tech-
niques including the most popular ones, such as poly-
merase chain reaction, microarrays, Sanger sequencing, 
and NGS. Identification of SNVs at a single-cell level is 
typically done by DNA sequencing. The most informa-
tive and conceptually correct approach is scDNA-seq in 
the Tapestri platform (Mission Bio). However, analysis 
of SNVs could be performed based on scRNA-seq data 
that also provide information on the gene expression. 
The main limitation in this case is that SNV analysis is 
applied only to the protein-coding sequences (exons), 
because the most common source for scRNA-seq is 
mRNA. Moreover, different patterns of gene expression 
and alternative splicing significantly limit the number of 
protein-encoding genomic regions available for analysis. 
Another important issue is that the 5′ or 3′ scRNA-seq 
most often used for the gene expression analysis excludes 
a significant portion of nucleotide sequences from anal-
ysis. This problem is especially significant in the case of 
3′ sequencing, when reads cover only a small part of the 
poly(A) tail of mRNA, while a large portion of exon se-
quences, which are most interesting for the SNV analy-
sis, is lost. This problem can be partially resolved in the 
case of 5′ sequencing, if the analyzed exome sequence is 
sufficiently expressed and the process of sample prepara-
tion involves random fragmentation of mRNA captured 
via the poly(A)-tail and conversion of the formed frag-
ments into cDNA to be used as a template for the library 
preparation. Another limitation in the SNV analysis of 
scRNA-seq data could be allelic dropout, in particular, 
when the droplet-in-oil technology is used for the isola-
tion of single cells prior to the barcoding and amplifica-
tion of target molecules, which hinders identification of 
subpopulations of heterozygous cells. The above limita-
tions should be taken into consideration while planning 
the analysis of SNVs based on scRNA-seq data. If pos-
sible, the pair-end sequencing should be used followed 
by verification by the classic approaches of molecular 
genetics.

In the majority of cases, identification of SNVs 
based on scRNA-seq data is performed by the meth-
ods developed for the analysis of DNA sequencing 
data, such as SAMtools, GATK, CTAT, FreeBayes, 
MuTect2, Strelka2, VarScan2, and others. The gener-
al workf low of these algorithms involves four stages: 
mapping to the reference genome, data preprocessing, 
variant calling, and filtering out false positives. The al-
gorithm used most often for mapping is STAR, as the 
one recommended by the GATK Best Practices [114]. 
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To analyze scRNA-seq data, the GSNAP tool can be 
used that works with short and difficult-to-map se-
quences [115]. Data preprocessing is used for the re-
moval of duplicates, repeated alignment, and basic 
evaluation of the read quality. Identification of genetic 
variants is carried out based on the deviation of nucle-
otide sequences from the reference ones and removal 
of variants with a low quality or insufficient coverage. 
Although MuTect2, Strelka2, and VarScan2 are used 
mainly for DNA sequencing as well as bulk RNA-seq, 
the variants identified with the help of these algo-
rithms could be correlated with the single-cell clusters 
revealed with other tools, for example, VarTrix, in or-
der to elucidate the genotype–phenotype associations. 
It  should be mentioned that the majority of described 
algorithms, with the exception of SAMtools  [116], op-
erate to a certain degree on the basis of GATK. More 
detailed comparison of these pipelines could be found 
in the review by Liu et  al.  [117]. The use of the Pysam 
tool based on the SAMtools for the detection of vari-
ants in the mitochondrial DNA from scRNA-seq data 
was described in [118].

The throughput capacity (the number of cells that 
could be analyzed in one experiment, which in turn 
determines the number of reads per cell) is important 
when selecting the platform for the library preparation 
in scRNA-seq. In particular, in the Fluidigm  C1 plat-
form (1000  per run), the sequencing depth could reach 
1  million per cell, while in the 10x Genomics Chromi-
um (up  to 10,000  cells per run), the sequencing depth 
in rarely is above 10-20  thousand, meaning that weak-
ly expressed variants and subclonal SNVs might not be 
detected. Further increase in the number of reads can 
be ineffective in the case of low library complexity and 
high sequencing saturation rate. In part, this is associ-
ated with the fact that the vast majority of reads would 
be mapped to a limited group of highly enriched tran-
scripts, and detection of weakly expressed genes and 
variants would require a significant increase of the se-
quencing depth. Such situation, for example, has been 
described for 10x Genomics scRNA-seq of mononuclear 
cells in the peripheral blood with the sequencing satu-
ration over 90%. The  probability of SNV detection can 
be increased by the analysis of PCR duplicates formed 
as a result of multiple amplification of a small number 
of original molecules. In standard bioinformatics algo-
rithms, such duplicates are removed from the following 
analysis as a source of false positives. However, Wilson 
et  al. [119] described the scSNV pipeline that allows to 
analyze such duplicates with a low false-positive rate of 
SNV detection. This method involves the ‘fusion’ of the 
duplicate sequences into long molecules after alignment 
to a reference followed by their analysis. In the process, 
the reads with a low complexity and artifacts from incor-
rectly mapped reads, which are the main source of false 
positives, are removed.

CANCER PHYLOGENETICS

One of the main features of oncological diseases is 
genomic instability  [120]. Genetic alterations, such as 
single-nucleotide variants and copy number aberrations, 
are the drivers of clonal evolution of tumor cells leading 
to the formation of clones and subclones resistant to an-
titumor therapy and having a high capacity to metastasis 
and recurrence. Investigation of the tumor clonal com-
position, especially its dynamics in the course of treat-
ment, allows not only to understand the mechanisms 
behind the emergence and progression of malignant 
neoplasms, but also to develop effective treatment strate-
gies, including those adapted to individual patients.

As a rule, investigation of genetic heterogeneity and 
clonal evolution of tumors involves bulk DNA-seq. How-
ever, the information on rare events is often lost when 
DNA from several thousands or millions of cells is mixed. 
Application of scDNA-seq could resolve the problems of 
searching for rare variants and analysis of tumor clonal 
structure via barcoding of each cell. However, the appli-
cation of this method is significantly limited at present. 
The only commercially available scDNA-seq technology 
Tapestri allows to evaluate the structure of a gene pan-
el selected by the user or provided by the manufacturer. 
The approaches based on the whole-genome amplification 
have a number of disadvantages, including insufficient ge-
nome coverage or systemic amplification error, which re-
sults in very noisy data [121]. That is why analysis of clonal 
evolution based on scRNA-seq data seems very suitable 
due to the possibility of simultaneous evaluation of genetic 
and transcriptional heterogeneity. However, this approach 
to the tumor phylogeny elucidation has several limitations 
including, in particular, impossibility of searching for ge-
netic variants in non-transcribed regions, existence of al-
lele-specific expression, low depth of scRNA-seq, and 
high level of noise in the obtained data [117,  122,  123]. 
Therefore, bioinformatics analysis of scRNA-seq data with 
the purpose of examining the clonal structure of tumors is 
challenging and so far has been implemented only in few 
tools (DENDRO, Cardelino, Trisicell, and SASC).

DENDRO takes into account the transcriptional 
bursting, SNV drop-outs, and sequencing errors [124]. 
It was used for estimating the mutational load and iden-
tification of neoantigens in each tumor subclone, as well 
as establishing association between the transcriptome 
changes and genetic divergence of tumor cells [124].

The Bayesian method Cardelino allows to integrate 
information on the phylogeny constructed based on bulk 
DNA-seq or scDNA-seq data with the data on allele 
variants obtained by scRNA-seq [125]. This approach 
considers stochastic SNV dropout in the transcriptome 
data and systemic allelic imbalance caused by monoallel-
ic expression or effects of regulatory factors. In addition, 
Cardelino can provide information on the subclonal 
hierarchy of tumor cells based on scRNA-seq data only.
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The majority of tools used for establishing the phy-
logeny are based on the infinite site assumption, accord-
ing to which each mutation emerges only once and is not 
eliminated in the process of phylogenies. This model 
significantly simplifies computing and can be used for 
building phylogenetic trees of normal cells, but not of 
malignant cells because of the high rate of accumula-
tion of mutations, as well as their elimination due to the 
emergence of CNVs. The developers of the SASC tool 
for the analysis of intra-tumor progression moved away 
from the perfect phylogeny model and used phylogenetic 
Dollo-k model, which considers mutation elimination 
during tumor evolution  [126]. The use of this model 
brings in  silico constructed phylogenetic trees closer to 
the real ones. Moreover, this tool considers differences 
in the rate of false-negative results for each mutation due 
to the difference in the levels of gene expression.

The Trisicell tool has been developed for clarification 
the results, increasing the throughput of existing phyloge-
ny-building tools, and comparing the trees built with differ-
ent tools and/or different datasets  [127]. Trisicell includes 
three computational methods: Trisicell-Boost, Trisicell-
PartF, and Trisicell-Cons. Trisicell-Boost increases the 
throughput and accuracy of other tools by using multiple 
selection of random subsets of mutations and building a tree 
for each phylogenetic mutation. After that, Trisicell-Boost 
compares different trees for the same sample and builds a 
resulting tree based on the consensus. Next, Trisicell-PartF 
calculates the probability of the presence of each node of 
the consensus tree in the investigated cells. Trisicell-Cons is 
designed for building consensus phylogenetic trees from the 
trees obtained with different tools and/or from scDNA-seq 
and scRNA-seq data. Trisicell-Cons minimizes the number 
of branches of two of more trees, resulting in a more reliable 
history of tumor progression.

The above-described tools are more applicable for 
processing the data of the full-length transcript sequenc-
ing (Smart-seq, NuGen Solo, and others) that provides 
the most uniform coverage and a relatively low level of 
noise [128]. Analysis of data of transcript end sequenc-
ing (10x Genomics Chromium, BD Rhapsody, and oth-
ers) could lead to the errors in the identification of gene 
variants due to the low sequencing depth and, as a con-
sequence, construction of incorrect phylogenetic trees. 
In  this regard, it is advisable to combine transcript end 
sequencing with bulk DNA-seq or scDNA-seq and to 
conduct joint bioinformatics analysis with the help of, 
for example, Cardelino or Trisicell.

EPIGENOMICS: CHROMATIN ACCESSIBILITY, 
IDENTIFICATION OF TRANSCRIPTION 

FACTOR-BINDING SITES

The spatiotemporal dynamics of gene expression is 
ensured by the functioning of numerous transcription 

factors and is regulated by multiple epigenetic mecha-
nisms. Chromatin accessibility and transcriptional ac-
tivity at the genome regulatory sites are among the key 
factors of the gene expression regulation. Regulatory el-
ements, such as promoters and enhancers, are DNA se-
quences of several hundreds to thousands base pairs in 
length that contain unique binding sites for transcription 
factors [129]. Comparative analysis of binding motifs in 
the regulatory elements in combination with the infor-
mation on the expression of transcription factors facil-
itates elucidation of the mechanisms of normal cellular 
processes and development of diseases.

The cell-specific activity of promoters is usually me-
diated by enhancers, which are responsible for the pre-
cise control of gene expression in a multicellular organ-
ism [130]. Hence, changes in the expression of the same 
gene in different types of cells or in the same type of cells 
but at different stages can be explained by changes in 
these cis-regulatory elements [131].

At present, accessible DNA regions are identified 
mostly by the assay for transposase-accessible chroma-
tin using sequencing (ATAC-seq). This approach has be-
come very popular due to the relative simplicity of the ex-
perimental procedure, as well as a small size of the initial 
sample required  –  from a single cell to several hundred 
of cells [132]. However, chromatin accessibility alone is 
insufficient for determining the type of regulatory ele-
ment, which also requires information on the transcrip-
tion factors binding to the open sites on chromatin and 
the profile of post-translational modification of histones 
f lanking accessible DNA in nucleosomes. The method of 
chromatin immunoprecipitation followed by sequencing 
(ChIP-seq), which uses antibodies against transcription 
factors or against specific post-translational modifica-
tion of histones, has allowed to map different regulatory 
elements in their active or repressed states [131]. Recent-
ly, the single-cell CUT&TAG method was developed 
for investigating the whole-genome distribution of dif-
ferent histone modifications at a single-cell level [133]. 
Although efficient mapping of genome regulatory ele-
ments can be achieved via combined application of the 
abovementioned techniques, it has serious limitations 
associated with the cost and requirements for large-size 
biological samples, as is impossible to conduct these 
analyses in the same cell samples. Moreover, the data of 
scATAC-seq and single-cell CUT&TAG are discrete by 
nature because each genome locus has only two chroma-
tin copies that could be analyzed within a cell. The data 
obtained with these methods are limited (~104 reads per 
cell) and, therefore, have a narrow dynamic range, which 
distinguishes them from the information obtained by 
scRNA-seq, which is more continuous because a gene 
could have several analyzed transcripts in the cell.

Another feature of functionally active promoters and 
enhancers is transcription. Promoters ensure transcrip-
tion of RNAs of the respective genes, while enhancer 



KHOZYAINOVA et al.244

BIOCHEMISTRY (Moscow) Vol. 88 No. 2 2023

RNAs (eRNAs) are transcribed from the enhancers. 
Studying the activity of regulatory elements revealed that 
the eRNA is transcribed when the enhancer is in contact 
with the corresponding promoter; this process correlates 
with histone modifications in active enhancers and is as-
sociated with transcription activation [129].

A large amount of accumulated RNA-seq and 
ATAC-seq data reveal the correlation between the chro-
matin accessibility and transcription. Modern meth-
ods of data analysis use machine learning techniques to 
predict the chromatin landscape based on the RNA-seq 
data. The BIRD tool (big data regression for predict-
ing DNase  I hypersensitivity) based on the regression 
models uses RNA-seq data for predicting open chroma-
tin region. The method had been initially developed as 
a training set for the DNase-seq method but has been 
then successfully used with the ATAC-seq data. BIRD 
can predict open chromatin regions using both bulk 
RNA-seq and scRNA-seq data [134]. The obtained re-
sults could be used for the analysis of chromatin enrich-
ment with the binding motifs for specific transcription 
factors in the promoters of DEGs with the widely used 
set of MEME tools based on hidden Markov model [135] 
and ChromVAR R-package [136]. However, this ap-
proach cannot be applied for the analysis of enhancers, 
as not all open chromatin regions located at a distance 
from the genes are enhancers. One of the latest tools 
developed for the analysis of regulatory elements based 
on scRNA-seq data, SCAFE (single cell analysis of five-
prime ends), provides solution for this problem based 
on the fact of transcription from active regulatory ele-
ments. The use of 5′ scRNA-seq allows identification of 
the transcription start sites (TSSs) in both promoters (for 
estimation of gene transcription) and enhancers (for es-
timation of eRNA transcription). To search for the tran-
scribed cis-regulatory elements, SCAFE uses a reference 
gene package, which contains information on existing 
open chromatin regions revealed by ATAC-seq. After 
identification of TSSs, this tool identifies the regulatory 
elements. Beside analysis of transcription factor-binding 
motifs, SCAFE can be used for evaluating the chang-
es in the dynamics of transcription of active regulatory 
elements in different states and identification of co-tran-
scribed enhancers and promoters for the prediction of 
their physical interactions  [137]. This analysis could be 
performed with the Cicero R-package developed for 
predicting interactions between the cis-regulatory DNA 
elements based on the chromatin accessibility data [138].

It is now possible to obtain information on the na-
ture of DEGs by examining the activity of regulatory el-
ements of all genes under investigation using one type 
of experimental data. A significant limitation of this ap-
proach is that it requires ATAC-seq data as a part of the 
training set, thus making challenging the use BIRD and 
SCAFE in the studies of non-model organisms. Unlike 
in the classic experimental approaches, the information 

on the accessible chromatin sites based on scRNA-seq 
data is formed only for the genes whose transcripts are 
detected. Hence, it is impossible to obtain complete 
epigenomic status of each cell. However, the obtained 
data are sufficient to evaluate the differences between the 
cells in the investigated sample. Further development of 
experimental approaches aimed to extend the sequencing 
depth for each single cell, as well as the improvement of 
computational procedures will increase the efficiency of 
prediction of the chromatin accessibility dynamics and 
activity of regulatory elements based on scRNA-seq data.

RECONSTRUCTION 
OF SPATIAL TRANSCRIPTOMICS

The spatial arrangement of cells in organs and tis-
sues is closely associated with their biological functions. 
Although all cells have the same genome, their mor-
phology and gene expression patterns differ significant-
ly depending on the tissue type and location. Such cel-
lular heterogeneity is associated with both intracellular 
regulatory mechanisms and effects of extracellular en-
vironment. The latter are most pronounced in various 
malignant neoplasms, where the cells of tumor microen-
vironment significantly contribute to the disease course 
and response to the antitumor therapy [139-141].

scRNA-seq allows to determine the cellular compo-
sition of investigated samples, transcriptional features of 
cells, cell differentiation trajectories, and other proper-
ties (see above). However, the information on the spa-
tial cell arrangement in a tissue is lost due to the disinte-
gration of samples during the cDNA library preparation 
and can be predicted only approximately. The algorithm 
for the reconstruction of the cell spatial arrangement, 
novoSpaRc, is based on the concept that cells located in 
a close vicinity of each other have more similar transcrip-
tional profiles [142] than cells located at a distance from 
each other. However, for the reconstruction of spatial or-
ganization, novoSpaRc uses pre-determined geometric 
shapes as a reference, so that all calculations are based 
on the features of the selected space. Moreover, the 
similarity of expression profiles in the cells can indeed 
be the consequence of their close location, but cannot 
determine it. Another tool, CSOmap, predicts coordi-
nates of each cell in the three-dimensional pseudospace 
not limited by a specified shape [143]. CSOmap is based 
on the assumption that the spatial arrangement of cells 
is determined by their ligand–receptor interactions. 
In  particular, this tool combines the gene expression 
profiles of single cells with the widely available informa-
tion on the ligand–receptor interactions [144, 145] in or-
der to create an affinity matrix that is transferred into a 
three-dimensional space. This approach allows not only 
to reconstruct the spatial organization de novo, but also 
to estimate the statistical significance of the cell–cell 
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interactions and contribution of individual ligand–
receptor pairs to the formation of such communications. 
One of the drawbacks of this tool is a variability of the 
results: information on the ligand–receptor interactions 
obtained from different sources can differ, which might 
affect the results.

Neither immunohistochemical staining, nor vari-
ants of in  situ hybridization and laser microdissection- 
assisted gene expression profiling are ideal methods for 
investigation of spatial transcriptomics. The first two are 
characterized by a large analysis area, but low transcript 
coverage. On the contrary, the third approach provides a 
wide spectrum of analyzed genes, but small investigated 
area. In recent years, numerous experimental methods 
have been developed that allow to analyze a large num-
ber of transcripts in large tissue samples [146]. Among 
those, Visium (10x  Genomics), GeoMx (NanoString 
Technologies), Molecular Cartography (Resolve Biosci-
ences), Stereo-seq (BGI STOmics), and other methods 
of spatial transcriptomics are commercially available. 
However, at the moment, Visium and GeoMx do  not 
provide a resolution at a single-cell level. The size of 
a spot with the spatial barcode on the Visium slide is 
55 μm, which implies the presence of several cells in this 
spot. Although GeoMx is theoretically able of capturing 
data with a single- cell resolution, this ability is limited 
by a high noise/signal ratio. The use of these methods 
is also restricted by their high cost. In 2021, the compa-
ny 10x Genomics announced the release of Visium HD, 
a spatial transcriptomics technology with the resolution 
400 times higher than the classic Visium and, respec-
tively, with the ability to perform analysis at a single-
cell level.

CONCLUSIONS 
AND FUTURE PROSPECTS

The progress in the multiplexing of single-cell 
cDNA libraries and development of bioinformatics 
computational techniques has significantly expanded 
the spectrum of information that could be derived from 
scRNA-seq data. In addition to classic applications of 
scRNA-seq, such as determination of cell cycle phases, 
identification of cell clusters, analysis of differential ex-
pression and signaling pathways, and cell typing, it has 
became possible to investigate various genetic and epi-
genetic cell features (CNVs, SNVs, state of chromatin) 
that determine cell phenotype, predict the direction of 
cell differentiation, obtain information on the cell–cell 
interactions and phylogeny, including in the context of 
spatial organization of tissues and organs.

However, obtaining information on CNVs, SNVs, 
phylogeny, and chromatin accessibility depends to a 
large extent on the sequencing quality and depth. In this 
regard, the most adequate solutions are commercially 

available, but labor-intensive Smart-seq approach based 
on the capture of full-length transcripts or integrative 
analysis of scRNA-seq, bulk DNA-seq, and scDNA-seq 
data. Another potential solution could be improvement 
of procedures for the preparation of full-length transcript 
libraries. The FLASH-seq protocol presented in 2022 is 
faster and more sensitive in comparison with any previ-
ously existing scRNA-seq protocols [147]. This method 
is based on the Smart-seq 2 protocol, but in order to re-
duce the time of analysis and to increase the resolution, 
the authors introduced several key modifications. They 
combined reverse transcription and cDNA preamplifi-
cation, replaced Superscript II reverse transcriptase with 
more processive Superscript  IV (SSRTIV), increased 
the amount of deoxycytidine triphosphate to enhance 
the C-tailing activity of SSRTIV and to boost the tem-
plate-switching reaction, and replaced the 3′-terminal 
locked nucleic acid guanidine in the template-switch-
ing oligonucleotide (prone to cause strand invasion) 
with riboguanosine. The platforms for the multiomics 
analysis of single cells also are very promising. These 
protocols have been developed already to combine 
evaluation of chromatin accessibility and single-cell 
transcriptome (sci-CAR  [148] and SNARE-seq  [149]) 
with simultaneous WGS and gene expression profiling 
(DNTR-seq) [150]. However, these methods are very la-
bor-consuming, expensive, and produce high percent of 
false-positive results.

We should also mention some important details 
in the identification of cell–cell interactions based on 
the analysis of ligand–receptor pairs. The tools using 
scRNA-seq data are based on the information on the li-
gand–receptor interactions derived from different sourc-
es, so the use of reference data from these sources might 
lead to different results. For example, the CSOmap tool 
uses information on the ligand–receptor interactions 
for the de  novo reconstruction of spatial organization. 
Because of the potential variability of results, such meth-
ods can yield only a set of hypotheses that should be vali-
dated in other experiments, for example, by the methods 
of spatial transcriptomics.

In general, we expect that rapid development of bio-
informatics analysis tools, improvement of protocols for 
the preparation of single-cell RNA/DNA libraries, and 
development of platforms for the multiomics analysis 
will significantly enhance the quality of biomedical re-
search. The progress in the area of single-cell technol-
ogies will help to decipher the cell heterogeneity emerg-
ing due to a combination of constitutive and functional 
features, which, in turn, will expand our understanding 
of biological processes in the normal and pathological 
conditions and allow to create fundamentally novel ap-
proaches to personalized therapy.
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