[Back to Issue 12 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]
[View Full Article] [Download Reprint (PDF)]

Discovery of a Photosynthesizing Animal that Can Survive for Months in a Light-Dependent Manner


V. P. Skulachev

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; fax: (495) 939-0338; E-mail: skulach@belozersky.msu.ru

Received September 14, 2010
Recently M. E. Rumpho and coworkers (USA) established that the marine slug Elysia chlorotica, a gastropod mollusk that feeds on the eukaryotic filamentous yellow-green alga Vaucheria litorea, recruits chloroplasts from the alga and transports them from the digestive apparatus into a special organ of the slug that resembles a green leaf and is an approximately 100-fold increased parapodium—an outgrowth of the slug’s body. The chloroplasts survive inside the slug for up to 10 months and perform active photosynthesis accompanied by assimilation of CO2. Under conditions of starvation, this photosynthesis becomes for the animal the only source of energy and fixed carbon. For functioning, chloroplasts have to constantly import some short-lived proteins that are encoded in the nucleus of the photosynthesizing organism. Therefore, the authors supposed that a transfer of the corresponding genes must have occurred between the algal and mollusk nuclei. This hypothesis was experimentally confirmed for two genes encoding proteins of the photosynthesizing apparatus. The questions arise of what mechanism was responsible for the transfer of these genes and how the slug created its photosynthesizing organ resembling the leaf of a higher plant rather than the primitive filamentous algal structure which was the source of the acquired chloroplasts and the photosynthesis genes.
KEY WORDS: photosynthesis, animal, mollusk, chloroplast

DOI: 10.1134/S0006297910120114