[Back to Issue 3 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]
[View Full Article] [Download Reprint (PDF)]

REVIEW: Photosystem II: Its Function, Structure, and Implications for Artificial Photosynthesis

James Barber

Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK; E-mail: j.barber@imperial.ac.uk

Received October 17, 2013
Somewhere in the region of 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of hydrogen equivalents needed to convert carbon dioxide into the organic molecules of life. The enzyme, which facilitates this reaction and therefore underpins virtually all life on our planet, is known as Photosystem II (PSII). It is a multisubunit enzyme embedded in the lipid environment of the thylakoid membranes of plants, algae, and cyanobacteria. Over the past 10 years, crystal structures of a 700 kDa cyanobacterial dimeric PSII complex have been reported with ever increasing improvement in resolution with the latest being at 1.9 Å. Thus the organizational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino acid side chains, of which seven provide ligands to the metals. The metal cluster is organized as a cubane-like structure composed of three Mn ions and the Ca2+ linked by oxo-bonds with the fourth Mn attached to the cubane via one of its bridging oxygens together with another oxo bridge to a Mn ion of the cubane. The overall structure of the catalytic site is providing a framework on which to develop a mechanistic scheme for the water splitting process and gives a blue print and confidence for the development of catalysts for mimicking the reaction in an artificial photo-electrochemical system to generate solar fuels.
KEY WORDS: photosynthesis, photosystem II, structure, water splitting, artificial photosynthesis, manganese cluster, oxygen evolving complex

DOI: 10.1134/S0006297914030031