[Back to Issue 1 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]
[View Full Article] [Download Reprint (PDF)]

The Effect of Antitumor Antibiotic Olivomycin A and Its New Semi-synthetic Derivative Olivamide on the Activity of Murine DNA Methyltransferase Dnmt3a

A. V. Sergeev1,a*, A. N. Tevyashova2,3, A. P. Vorobyov1, and E. S. Gromova1

1Lomonosov Moscow State University, Faculty of Chemistry, 119991 Moscow, Russia

2Gause Institute of New Antibiotics, 119021 Moscow, Russia

3D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia

* To whom correspondence should be addressed.

Received July 5, 2018; Revised September 28, 2018; Accepted September 28, 2018
Olivomycin A is a highly active antitumor drug that belongs to the family of aureolic acid antibiotics. The antitumor effect of olivomycin A is related to its ability to bind to the DNA minor groove in GC-rich regions as Mg2+-coordinated complexes. Characterization of cellular targets of olivomycin A and its mechanism of action is crucial for the successful application of this antibiotic in clinical practice and development of semi-synthetic derivatives with improved pharmacological properties. Previously, we have shown that minor groove ligands are able to disrupt the key epigenetic process of DNA methylation. In this paper, we have studied the impact of olivomycin A and its improved semi-synthetic analogue N,N-dimethylaminoethylamide of 1′-des-(2,3-dihydroxy-n-butyroyl)-1′-carboxy-olivomycin A (olivamide) on the functioning of de novo DNA methyltransferase Dnmt3a (enzyme that carries out methylation of cytosine residues in the DNA CG-sites in eukaryotic cells) using an in vitro system consisting of the murine Dnmt3a catalytic domain and a 30-mer DNA duplex containing four consecutive GC pairs. We have shown that olivomycin A and olivamide inhibit Dnmt3a with IC50 of 6 ± 1 and 7.1 ± 0.7 μM, respectively. Neither olivomycin A nor olivamide interfered with the formation of the specific enzyme–substrate complex; however, olivomycin A prevented formation of the covalent DNA–Dnmt3a intermediate that is necessary for the methylation reaction to proceed. The inhibitory effects of olivomycin A and olivamide can be explained by the disruption of the enzyme catalytic loop movement through the DNA minor groove (the reaction stage that precedes the covalent bond formation between DNA and the enzyme). The results of this work indicate the epigenetic contribution to the antitumor effect of aureolic acid group antibiotics.
KEY WORDS: DNA methylation, olivomycin A, olivamide, minor groove ligands, DNA methyltransferase Dnmt3a, inhibition of methylation

DOI: 10.1134/S0006297919010085